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We shall limit ourselves to the consideration of cubic splines since we wish
to take full advantage of the special properties of the system oflinear equations
which arises in this situation. For the same reason we restrict our considera­
tions to simple splines of interpolation. These splines are required by definition
to interpolate only to f(x) at mesh points and not to both f(x) and j'(x);
they possess continuous second derivatives throughout their domain of
definition.

For most purposes, the restriction to simple cubic splines is innocuous since
at a mesh point where interpolation to bothf(x) andj'(x) is required, a cubic
spline of interpolation is separated into two independent splines. For instance,
if there are two double points of interpolation x jo and xh such that x jo < Xh'

the spline reduces on the closed interval [xjO'xJl ] to a type I spline of inter­
polation ([1], p. 75) to f(x); the theory of such splines is well known. If,
however, there is no point of double interpolation xh to the right of X jo ' we
must consider splines S,if; x) on the infinite interval [x jo' rf) which interpolate
to f(x) at the mesh points of a mesh L1 on (xjO' oc). We shall consider this
situation in detail, and also indicate the rather minor modifications required
when the interval (x jO' 00) is replaced by the interval (-XJ, 00).

In the interval Xi-I";;; X,,;;; Xi a cubic spline S,:j(f;x) which interpolates to
the valuesjj = f(xj),j = 0, 1, ... , at the points x j of the mesh L1: Xo < XI < ...
is given ([1], p. 10) by
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(1)

(3)

(2)

Here Ij = x j - x j _ 1 and M j = S",lf;x j ). As a consequence of (1) we have on
X/_I ~X~Xi

S',j(f;X) = _ ¥i-l(Xi - x)Z + Mi(x - x/-If
2/i 2//

It -It-I M i - M i - II+ -- ---- - --_. --- .
Ii 6"

S",j(f;x) = ~iS~ [_Xi_I) + Mi-1(;i - X).
I 1

It is immediate from (1) that S,j(!;x/) = It and from (3) that S",j(f;x/) = M,
(i = 0, 1, ...). Consequently, S,j(f;x) and S",j(f;x) are in C(xo, ex::). In order to
insure that S',j(f;x) is also in C(xo, co), the following infinite system ofequa­
tions must be satisfied:

=1t+/-It_It-f-l=.d/ (i=1,2, ...). (4)
/-t-I i

In order that S',j(f; .:Yo) = fo' =.1'(xo) we have to satisfy the additional equation

1 1 f,-fo,
)/, M o+ r/,M 1 = -l~- - fo =. do· (5)

In matrix form we must solve the equation

where

A=

AM=d,

t/, ill 0 0
ill ,WI + Iz) ilz 0
o ilz t(lz + 13) -M3

M=(Mo,M" .. y,
d = (do,d j , •• y.

(6)

(7)

(8)

(9)
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When the interval (xo, (0) is replaced by the real line (-00, oc;), Eqs. (4) apply
except that now i = 0, ±1, ±2, ... , and Eq. (5) is omitted. In this case

A=
f)-I -!-(l-I + 1o) -Vo 0 0
o i/o t(lo + II) ill 0
o 0 ill ,WI + Il ) ill

M = ( ,M_I,Mo,MI ,· ••r,
d = ( , d_

"
do, dl>" ·r.

, (7')

(8')

(9')

Moreover, if we reorder the components of M (and d) such that in rearranged
form

M = (Mo, ilL I , M
"

M_ l , M l , .. .),

then A will be a singly-infinite matrix such as (6) which is symmetric and has
the same diagonal elements as those of A, although they will be reordered.

Let us introduce the notation

11L1!1 = sup Ii>
t

(10)

(11)

:?l~ = 11L111/8~, 8~ =I- O.

If we require 8~ > 0, then A = (a/j), as given by (7) or (7'), is a symmetric
matrix, which is strongly diagonally dominant in the sense that

inf{latt l - 2 laul};;;' -3
1
8~ > O.

t ii'I

Moreover, S~(f;x) exists and is unique if and only if Eq. (6) has a unique
solution. In addition, the standard convergence results ([1], Chapter II) can
be obtained for the intervals [xo, oc;) and (-00,00) if

IIA- I II", = sup 2 Ibul < KI8~,
i i

where K is a constant independent of L1 and

A-I = (b/j)'

By /'" we shall mean the collection of all vectors

(12)

(13)

(14)
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where Vj (j = 0, 1, ...) is a complex number and I:vlloo == sup Ivjl < oc. The set
}

IX> is a Banach space under this norm. If A = (all), (i,j = 0, 1,2, ...) is a matrix
for which

00
sup 2: laul < 00,

I }~o

then A defines a bounded linear transformation on /00; and if IIAI!oo is the
infimum of all positive numbers C for which

then
00

IIAII", = sup 2: laul·
I }~o

We shall denote by f2 the set of all vectors (14) for which

'"IlvW = 2: IVjl2 < OC.
}=o

The space 12 is a Hilbert space under the inner product

(15)

(16)

00

(v,u)= 2: Vju},
}=o

A matrix A = (au) defines a linear transformation of 12 into [2 if Av is in 12

whenever v is in /2. We shall let ilA!1 denote the infimum ofall positive numbers
Cfor which

(17)

If IIAI is finite, A defines a bounded linear transformation of12 into [2. Although
we lack a convenient expression for IIA:I, Schur's theorem ([2], p. 328) asserts

[[All < {(s~p Jo laul) (s~p i~O laljl)t
2

• (18)

If A is either symmetric or Hermitian, (18) becomes

(19)

(20)

The following theorem establishes the existence of S"j(f;x) if 1:L11 < oc,
o"j > 0, and shows that (12) is satisfied so that convergence results can be
derived.

THEOREM. Let A = (au) (i,j = 0, 1, ...) be a real symmetric matrix for which

i~f{lalil- j~i laul} == 0 > 0,

x

sup :2: laijl == ,:AJ,: < ex.
i }~O
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Under these conditions, A-I exists and, with the notation A-I = (blJ), we have

(21)

(25)

Proof Consider, momentarily, A as a linear transformation on 12
• Since (19)

holds, A is a bounded linear transformation, and since A is Hermitian, its
spectrum is real; thus for A> 0, Ail == (A - iA/)-1 exists. Moreover, for
positive Awe have

inf{lau - iAI - L laul }== 0,1 > O. (22)
t l"",t

In addition 0,1 ~ 0 as A~ O. Now, Ail is a bounded linear operator on 12

and can be represented by an infinite matrix (a~jA» which is symmetric since
AA, while not Hermitian, is symmetric. Let v be in f2 and choose E > O. There
exists i€ such that Ilvl!", - Ivt.1 < E. Consequently, if AA = (at),

IIAA vii", ;;. latd.11 Vt.1 -II vii", L laLI
1#1.

;;. iiV!I",{la:. I• I- L lat•i l} -Iate/.I E. (23)
l#t.

Since (23) holds for all E > 0 and since lat. i.1 < IIAAI!"" we have

IIAA vii",;;, 0Allvll",· (24)

Indeed the inequality (24) holds not only for v in 12 but for any v in I"'. How­
ever, for w in f2 we can choose v such that v = Ail w, and obtain

IIA- I II 1 I' I'
A w '" ,;;; 0,1 liW:I",'

Now let

yk
N = (exp (-i any att», exp (-i any at/», ..., exp (-i any atnA», 0, O, .. .y.

(26)
Since yk

Nis in f2 and IlykNI!", = 1, it follows that
(_A) (_A) (_A) 1

lak.o I + lak,l I+ ... + lak,N I ,;;; 0,1 . (27)

But this is true for N = 0, 1, ... , and for each k. Hence,

~ I (-,1)1 < 1sup L akl = ~ < 00,
k l~O 0,1

and Ail is actually a bounded linear transformation on I'" which is inverse to
AA' Moreover, we can choose Asuch that

IIA - AAI", = 1,\1 < 0,1';;; IIA;iIT~;
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hence ([2], p. 164) A-I exists. Furthermore, we have for every'\ > °
! _(: IIAA1iloo

!i A i[:x> < 1 -I!AA'I!:,,'\'
If we let ,\ --+ 0, then

which proves the theorem.
A simpler proof can be given in the case :3£,d < 2. Let D be the diagonal

matrix whose diagonal is that of A. Then D- 1 exists and

IID-'II:x> < 2~,d .

In addition, we have
IILlII~,d 2o,d I

I!A - Dlloo < 3 = 3 Sod < -y < IID-l-'-
,[",

under the condition~,d < 2. The theorem now follows ([2], p. 164).
We have demonstrated that if a sequence of {Yi} (i = 0, 1, ...) is prescribed

such that for the associated vector d we have :Idl:oo < 00, then there is a unique
cubic spline S,d(x) interpolating to Yi at X" having a prescribed value Yo' for
S',d(x) at xo, and having ';Mi:c <:c. If we do not require I!d!!:x> < 00, then there
is a one-parameter family of splines on [xo, 00] having these properties. This
s also true even if Ildl;:x> < OCJ; but in this case, IMII:x> = 00 except for one value

of the parameter. In support of these assertions we observe that there is a
unique cubic C(x) on the interval [xo,xd with C(xo), C'(xo), C"(xo), C(x l )

arbitrarily prescribed. Using the values of C'(x) and C"(x) at XI we now (by
repeating the construction) can extend the domain of definition of C(x) to
[XO,X2] and have C(x) in C 2[XO'X2]. Further repetition of this construction
gives the desired spline function. Similarly, C(x) can be extended to the interval
(-00,00). In this case there are two more degrees of freedom (C'(xo), C"(xo))
than when we require !ld!':x> < 00, IIM!I", < w. When l'd,l", < w in order to avoid
a contradiction to our earlier existence theorem, !!M ::'" = ex; with one exception.

The following inequalities typify the behavior of C(x): If C(x) < Q for
x> X o = 0, then C(x) < Yo +Yo' x + tQx2 and C'(x) < Yo' + Qx for x> O.
Similarly, if C"(x):;;, QI for x> Xo = 0, then C(x):;;, Yo + Yo' x + tQIX2 and
C'(x) :;;, Yo' + QI x for x> O. These inequalities are the best possible since
they become equalities if C(x) is a quadratic. Of course C" (Xi) ~ Q for i ~°
implies C" (x) ~ Q for x ~ xo; C" (x;) ~ Ql for i ~ 0 implies C"(x) ~ Q 1 for
X ~ xo'
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